Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells
نویسندگان
چکیده
Extra chromosome copies markedly alter the physiology of eukaryotic cells, but the underlying reasons are not well understood. We created human trisomic and tetrasomic cell lines and determined the quantitative changes in their transcriptome and proteome in comparison with their diploid counterparts. We found that whereas transcription levels reflect the chromosome copy number changes, the abundance of some proteins, such as subunits of protein complexes and protein kinases, is reduced toward diploid levels. Furthermore, using the quantitative data we investigated the changes of cellular pathways in response to aneuploidy. This analysis revealed specific and uniform alterations in pathway regulation in cells with extra chromosomes. For example, the DNA and RNA metabolism pathways were downregulated, whereas several pathways such as energy metabolism, membrane metabolism and lysosomal pathways were upregulated. In particular, we found that the p62-dependent selective autophagy is activated in the human trisomic and tetrasomic cells. Our data present the first broad proteomic analysis of human cells with abnormal karyotypes and suggest a uniform cellular response to the presence of an extra chromosome.
منابع مشابه
I-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility
Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...
متن کاملI-49: Human Y Chromosome ProteomeProject
The success of the Human Genome Project (HGP) has provided a blueprint for the approximately 20,000 gene-encoded proteins potentially active in all of the hundreds of cell types that make up the human body. Yet we still have limited knowledge about a majority of the gene-encoded proteins which are the “building blocks of life” and “cellular machinery”. It is estimated that for nearly half of th...
متن کاملon the Cancer Transcriptome Aneuploidy Reveals a Pervasive Genome-Wide Imprinting of Wavelet Transformations of Tumor Expression Profiles
Aneuploidy is frequently observed in many human cancers, but its global effects on the cancer transcriptome are controversial. We did a systematic and unbiased genome-wide survey to determine the extent a tumor’s abnormal karyotype (chromosomal amplifications and deletions) is detectably ‘‘imprinted’’ onto that tumor’s gene expression profile. By using a novel methodology employing wavelet tran...
متن کاملWavelet transformations of tumor expression profiles reveals a pervasive genome-wide imprinting of aneuploidy on the cancer transcriptome.
Aneuploidy is frequently observed in many human cancers, but its global effects on the cancer transcriptome are controversial. We did a systematic and unbiased genome-wide survey to determine the extent a tumor's abnormal karyotype (chromosomal amplifications and deletions) is detectably "imprinted" onto that tumor's gene expression profile. By using a novel methodology employing wavelet transf...
متن کاملHSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells.
Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012